Work equal to $25\,J$ is done on a mass of $2\,kg$ to set it in motion. If whole of it is used to increase the kinetic energy then velocity acquired by the mass is ............ $\mathrm{m}/ \mathrm{s}$

  • A

    $5$

  • B

    $12.5$

  • C

    $25$

  • D

    $50$

Similar Questions

A neutron travelling with a velocity $v$ and $K.E.$ $E $ collides perfectly elastically head on with the nucleus of an atom of mass number $A$ at rest. The fraction of total energy retained by neutron is

Work done in time $t $ on a body of mass $m$ which is accelerated from rest to a speed $v$ in time ${t_1}$ as a function of time $t$ is given by

System shown in figure is released from rest. Pulley and spring are massless and the friction is absent everywhere. The speed of $5\, kg$ block, when $2\, kg$ block leaves the contact with ground is (take force constant of the sprign $k = 40\, N/m$ and $g = 10\, m/s^2$)

A particle moves under the effect of a force $F = cx$ from $x = 0$ to $x = x_1$. The work done in the process is

The diagram to the right shows the velocity-time graph for two masses $R$ and $S$ that collided elastically. Which of the following statements is true?

$(I)$ $R$ and $S$ moved in the same direction after the collision.

$(II)$ Kinetic energy of the system $(R$ & $S)$ is minimum at $t = 2$ milli sec.

$(III)$ The mass of $R$ was greater than mass of $S.$