The maximum static frictional force is
Equal to twice the area of surface in contact
Independent of the area of surface in contact
Equal to the area of surface in contact
None of the above
A hockey player is moving northward and suddenly turns westward with the same speed to avoid an oopponent. The force that acts on the player is
When a body slides down from rest along a smooth inclined plane making an angle of $45^o$ with the horizontal, it takes time $T$. When the same body slides down from rest along a rough inclined plane making the same angle and through the same distance, it is seen to take time $pT$, where $p$ is some number greater than $1$. Calculate the coefficient of friction between the body and the rough plane.
A rod $(AB)$ is attached to a fixed point $(C)$ using a light rope $(AC)$. The other end of the rod $(B)$ is sitting on ice with negligible friction and the system is in stationary position. Which of the following can be the equilibrium configuration of this system?
Block $B$ of mass $100 kg$ rests on a rough surface of friction coefficient $\mu = 1/3$. $A$ rope is tied to block $B$ as shown in figure. The maximum acceleration with which boy $A$ of $25 kg$ can climbs on rope without making block move is:
A heavy body of mass $25\, kg$ is to be dragged along a horizontal plane $\left( {\mu = \frac{1}{{\sqrt 3 }}} \right).$ The least force required is ........ $kgf$