The maximum value of function $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ is
$\frac{1}{\pi }\sqrt {{\pi ^2} + 4} $
$\frac{1}{{{\pi ^2}}}\sqrt {{\pi ^2} + 4} $
$\sqrt {{\pi ^2} + 4} $
$\frac{1}{{2{\pi ^2}}}\sqrt {{\pi ^2} + 4} $
Let a function $f : R \rightarrow R$ is defined such that $3f(2x^2 -3x + 5) + 2f(3x^2 -2x + 4) = x^2 -7x + 9\ \ \ \forall x \in R$, then the value of $f(5)$ is-
If $f(x) = \log \frac{{1 + x}}{{1 - x}}$, then $f(x)$ is
Consider a function $f:\left[ { - 1,1} \right] \to R$ where $f(x) = {\alpha _1}{\sin ^{ - 1}}x + {\alpha _3}\left( {{{\sin }^{ - 1}}{x^3}} \right) + ..... + {\alpha _{(2n + 1)}}{({\sin ^{ - 1}}x)^{(2n + 1)}} - {\cot ^{ - 1}}x$ Where $\alpha _i\ 's$ are positive constants and $n \in N < 100$ , then $f(x)$ is
For a suitably chosen real constant $a$, let a function, $f: R-\{-a\} \rightarrow R$ be defined by $f(x)=\frac{a-x}{a+x} .$ Further suppose that for any real number $x \neq- a$ and $f( x ) \neq- a ,( fof )( x )= x .$ Then $f\left(-\frac{1}{2}\right)$ is equal to
Numerical value of the expression $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ for $x = - 3$ is