The maximum value of function $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ is
$\frac{1}{\pi }\sqrt {{\pi ^2} + 4} $
$\frac{1}{{{\pi ^2}}}\sqrt {{\pi ^2} + 4} $
$\sqrt {{\pi ^2} + 4} $
$\frac{1}{{2{\pi ^2}}}\sqrt {{\pi ^2} + 4} $
Let function $f(x) = {x^2} + x + \sin x - \cos x + \log (1 + |x|)$ be defined over the interval $[0, 1]$. The odd extensions of $f(x)$ to interval $[-1, 1]$ is
For $x\,\, \in \,R\,,x\, \ne \,0,$ let ${f_0}(x) = \frac{1}{{1 - x}}$ and ${f_{n + 1}}(x) = {f_0}({f_n}(x)),$ $n\, = 0,1,2,....$ Then the value of ${f_{100}}(3) + {f_1}\left( {\frac{2}{3}} \right) + {f_2}\left( {\frac{3}{2}} \right)$ is equal to
If $f(x)$ be a polynomial function satisfying $f(x).f (\frac{1}{x}) = f(x) + f (\frac{1}{x})$ and $f(4) = 65$ then value of $f(6)$ is
A function $f(x)$ is given by $f(x)=\frac{5^{x}}{5^{x}+5}$, then the sum of the series
$f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots \ldots+f\left(\frac{39}{20}\right)$ is equal to ....... .
Consider a function $f : N \rightarrow R$, satisfying $f(1)+2 f(2)+3 f(3)+\ldots+x f(x)=x(x+1) f(x) ; x \geq 2$ with $f(1)=1$. Then $\frac{1}{f(2022)}+\frac{1}{f(2028)}$ is equal to