If $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$ for $x \in R$, then $f(2002) = $

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

The total number of functions,$f:\{1,2,3,4\} \cdot\{1,2,3,4,5,6\}$   such that $f (1)+ f (2)= f (3)$, is equal to .

  • [JEE MAIN 2022]

Let $f : R \to R$ be a function defined by $f(x) =  - \frac{{|x{|^3} + |x|}}{{1 + {x^2}}}$; then the graph of $f(x)$ is lies in the :-

If $f(x) = \frac{x}{{x - 1}}$, then $\frac{{f(a)}}{{f(a + 1)}} = $

The period of the function $f(x) = \log \cos 2x + \sin 4x$ is :-

Let $[t]$ be the greatest integer less than or equal to $t$. Let $A$ be the set of al prime factors of $2310$ and $f: A \rightarrow \mathbb{Z}$ be the function $f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$. The number of one-to-one functions from $A$ to the range of $f$ is :

  • [JEE MAIN 2024]