If $f(x)$ satisfies the relation $f\left( {\frac{{5x - 3y}}{2}} \right)\, = \,\frac{{5f(x) - 3f(y)}}{2}\,\forall x,y\in R$ $f(0) = 1, f '(0) = 2$ then period of $sin \ (f(x))$ is
$2 \pi$
$\pi$
$3 \pi$
$4 \pi$
Range of $f(x) = sin^{-1} (\sqrt {x^2 + x +1})$ is -
If domain of function $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ is $R$ , then number of possible integral values of $m$ is
If the domain of the function $f(\mathrm{x})=\frac{\cos ^{-1} \sqrt{x^{2}-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$ is the interval $(\alpha, \beta]$, then $\alpha+\beta$ is equal to:
Prove that the Greatest Integer Function $f: R \rightarrow R ,$ given by $f(x)=[x]$, is neither one-one nor onto, where $[x]$ denotes the greatest integer less than or equal to $x$.
Let $f(x) = sin\,x,\,\,g(x) = x.$
Statement $1:$ $f(x)\, \le \,g\,(x)$ for $x$ in $(0,\infty )$
Statement $2:$ $f(x)\, \le \,1$ for $(x)$ in $(0,\infty )$ but $g(x)\,\to \infty$ as $x\,\to \infty$