If $f(x)$ satisfies the relation $f\left( {\frac{{5x - 3y}}{2}} \right)\, = \,\frac{{5f(x) - 3f(y)}}{2}\,\forall x,y\in R$ $f(0) = 1, f '(0) = 2$ then period of $sin \ (f(x))$ is

  • A

    $2 \pi$

  • B

    $\pi$

  • C

    $3 \pi$

  • D

    $4 \pi$

Similar Questions

Show that none of the operations given above has identity.

Let $f: R \rightarrow R$ be a function defined by $f(x)=(2+3 a) x^2+\left(\frac{a+2}{a-1}\right) x+b, a \neq 1$. If $f(x+y)=f(x)+f(y)+1-\frac{2}{7} x y$, then the value of $28 \sum_{i=1}^3|f(i)|$ is:

  • [JEE MAIN 2025]

The range of the function $f(x) = \frac{{x + 2}}{{|x + 2|}}$ is

Let $R$ be the set of all real numbers and $f(x)=\sin ^{10} x\left(\cos ^8 x+\cos ^4 x+\cos ^2 x+1\right)$ $x \in R$. Let  $S=\{\lambda \in R$ there exists a point $c \in(0,2 \pi)$ with $\left.f^{\prime}(c)=\lambda f(c)\right\}$ Then,

  • [KVPY 2020]

If the range of $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ is ($a, b$], then ($a +b$) is