- Home
- Standard 12
- Mathematics
For $\alpha, \beta \in \mathrm{R}$ and a natural number $\mathrm{n}$, let
$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$. Then $2 A_{10}-A_8$
$4 \alpha+2 \beta$
$2 \alpha+4 \beta$
$2 n$
$0$
Solution
$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$
$2 \mathrm{~A}_{10}-\mathrm{A}_8=\left|\begin{array}{ccc}20 & 1 & \frac{\mathrm{n}^2}{2}+\alpha \\ 40 & 2 & \mathrm{n}^2-\beta \\ 56 & 3 & \frac{\mathrm{n}(3 \mathrm{n}-1)}{2}\end{array}\right|-\left|\begin{array}{ccc}8 & 1 & \frac{\mathrm{n}^2}{2}+\alpha \\ 16 & 2 & \mathrm{n}^2-\beta \\ 22 & 3 & \frac{\mathrm{n}(3 \mathrm{n}-1)}{2}\end{array}\right|$
$\Rightarrow\left|\begin{array}{ccc}12 & 1 & \frac{n^2}{2}+\alpha \\ 24 & 2 & n^2-\beta \\ 34 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$
$\Rightarrow\left|\begin{array}{ccc}0 & 1 & \frac{\mathrm{n}^2}{2}+\alpha \\ 0 & 2 & \mathrm{n}^2-\beta \\ -2 & 3 & \frac{\mathrm{n}(3 \mathrm{n}-1)}{2}\end{array}\right|$
$\Rightarrow-2\left(\left(\mathrm{n}^2-\beta\right)-\left(\mathrm{n}^2+2 \alpha\right)\right)$
$\Rightarrow-2(-\beta-2 \alpha) \Rightarrow 4 \alpha+2 \beta$