3 and 4 .Determinants and Matrices
hard

For $\alpha, \beta \in \mathrm{R}$ and a natural number $\mathrm{n}$, let

$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$. Then $2 A_{10}-A_8$

A

 $4 \alpha+2 \beta$

B

$2 \alpha+4 \beta$

C

 $2 n$

D

$0$

(JEE MAIN-2024)

Solution

$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$

$2 \mathrm{~A}_{10}-\mathrm{A}_8=\left|\begin{array}{ccc}20 & 1 & \frac{\mathrm{n}^2}{2}+\alpha \\ 40 & 2 & \mathrm{n}^2-\beta \\ 56 & 3 & \frac{\mathrm{n}(3 \mathrm{n}-1)}{2}\end{array}\right|-\left|\begin{array}{ccc}8 & 1 & \frac{\mathrm{n}^2}{2}+\alpha \\ 16 & 2 & \mathrm{n}^2-\beta \\ 22 & 3 & \frac{\mathrm{n}(3 \mathrm{n}-1)}{2}\end{array}\right|$

$\Rightarrow\left|\begin{array}{ccc}12 & 1 & \frac{n^2}{2}+\alpha \\ 24 & 2 & n^2-\beta \\ 34 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$

$\Rightarrow\left|\begin{array}{ccc}0 & 1 & \frac{\mathrm{n}^2}{2}+\alpha \\ 0 & 2 & \mathrm{n}^2-\beta \\ -2 & 3 & \frac{\mathrm{n}(3 \mathrm{n}-1)}{2}\end{array}\right|$

$\Rightarrow-2\left(\left(\mathrm{n}^2-\beta\right)-\left(\mathrm{n}^2+2 \alpha\right)\right)$

$\Rightarrow-2(-\beta-2 \alpha) \Rightarrow 4 \alpha+2 \beta$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.