Let $v_1 =$ variance of $\{13, 1 6, 1 9, . . . . . , 103\}$ and $v_2 =$ variance of $\{20, 26, 32, . . . . . , 200\}$, then $v_1 : v_2$ is
$1 : 2$
$1 : 1$
$4 : 9$
$1 : 4$
If the variance of the following frequency distribution is $50$ then $x$ is equal to:
Class | $10-20$ | $20-30$ | $30-40$ |
Frequency | $2$ | $x$ | $2$ |
Let the mean and variance of $8$ numbers $x , y , 10$, $12,6,12,4,8$, be $9$ and $9.25$ respectively. If $x > y$, then $3 x-2 y$ is equal to $...........$.
A data consists of $n$ observations
${x_1},{x_2},......,{x_n}.$ If $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}} = 9n$ and $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}} = 5n,$ then the standard deviation of this data is
The mean and standard deviation of $10$ observations are $20$ and $84$ respectively. Later on, it was observed that one observation was recorded as $50$ instead of $40$. Then the correct variance is:
The first of the two samples in a group has $100$ items with mean $15$ and standard deviation $3 .$ If the whole group has $250$ items with mean $15.6$ and standard deviation $\sqrt{13.44}$, then the standard deviation of the second sample is: