- Home
- Standard 11
- Mathematics
13.Statistics
hard
The mean and variance of $8$ observations are $10$ and $13.5,$ respectively. If $6$ of these observations are $5,7,10,12,14,15,$ then the absolute difference of the remaining two observations is
A
$7$
B
$3$
C
$5$
D
$9$
(JEE MAIN-2020)
Solution
$\bar{x}=10$
$\Rightarrow \bar{x}=\frac{63+a+b}{8}=10 \Rightarrow a+b=17$
since, variance is independent of origin. So, we subtract 10 from each observation.
$So , \sigma^{2}=13.5=\frac{79+( a -10)^{2}+( b -10)^{2}}{8}-(10-10)^{2}$
$\Rightarrow a ^{2}+ b ^{2}-20( a + b )=-171$
$\Rightarrow a ^{2}+ b ^{2}=169 \quad \ldots(2)$
From
$(i) and (ii)$ $; a=12 \& b=5$
Standard 11
Mathematics
Similar Questions
medium
From the data given below state which group is more variable, $A$ or $B$ ?
Marks | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
Group $A$ | $9$ | $17$ | $32$ | $33$ | $40$ | $10$ | $9$ |
Group $B$ | $10$ | $20$ | $30$ | $25$ | $43$ | $15$ | $7$ |
hard