The mean of $5$ observations is $4.4$ and their variance is $8.24$. If three observations are $1, 2$ and $6$, the other two observations are
$4$ and $8$
$4$ and $9$
$5$ and $7$
$5$ and $9$
The average marks of $10$ students in a class was $60$ with a standard deviation $4$ , while the average marks of other ten students was $40$ with a standard deviation $6$ . If all the $20$ students are taken together, their standard deviation will be
For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be
Let ${x_1}\;,\;{x_2}\;,\;.\;.\;.\;,{x_n}$ be $n$ observations, and let $\bar x$ be their arithmaetic mean and ${\sigma ^2}$ be the variance
Statement $-1$ :Variance of $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ is $4{\sigma ^2}$ .
Statement $-2$: Arithmetic mean $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ is $4\bar x$.
A data consists of $n$ observations
${x_1},{x_2},......,{x_n}.$ If $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}} = 9n$ and $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}} = 5n,$ then the standard deviation of this data is
Consider three observations $a, b$ and $c$ such that $b = a + c .$ If the standard deviation of $a +2$ $b +2, c +2$ is $d ,$ then which of the following is true ?