Consider $10$ observation $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$. such that $\sum_{i=1}^{10}\left(x_i-\alpha\right)=2$ and $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$, where $\alpha, \beta$ are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. The $\frac{\beta}{\alpha}$ is equal to :

  • [JEE MAIN 2024]
  • A

    $2$

  • B

     $\frac{3}{2}$

  • C

     $\frac{5}{2}$

  • D

    $1$

Similar Questions

The mean of five observations is $5$ and their variance is $9.20$. If three of the given five observations are $1, 3$ and $8$, then a ratio of other two observations is

  • [JEE MAIN 2019]

The mean and standard deviation of $20$ observations are found to be $10$ and $2$ respectively. On rechecking, it was found that an observation $8$ was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

If it is replaced by $12$

Find the mean and variance for the following frequency distribution.

Classes $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
Frequencies $5$ $8$ $15$ $16$ $6$

In any discrete series (when all values are not same) the relationship between $M.D.$ about mean and $S.D.$ is

If the variance of the frequency distribution is $160$ , then the value of $\mathrm{c} \in \mathrm{N}$ is

$X$ $c$ $2c$ $3c$ $4c$ $5c$ $6c$
$f$ $2$ $1$ $1$ $1$ $1$ $1$

  • [JEE MAIN 2024]