13.Oscillations
medium

The metallic bob of simple pendulum has the relative density $5$. The time period of this pendulum is $10\,s$. If the metallic bob is immersed in water, then the new time period becomes $5 \sqrt{ x } s$. The value of $x$ will be.

A

$4$

B

$5$

C

$3$

D

$0$

(JEE MAIN-2022)

Solution

$g^{\prime}=\frac{m g-F_{B}}{m}$

$=\frac{\rho_{B} V g-\rho_{\pi} V g}{\rho_{B} V}$

$=\left(\frac{\rho_{B}-\rho_{\pi}}{\rho_{B}}\right) g \quad T=2 \pi \sqrt{\frac{\ell}{g}}$

$=\frac{5-1}{5} \times g$

$=\frac{4}{5} g$

$\frac{T^{\prime}}{T^{\prime}}=\sqrt{\frac{g}{g^{\prime}}}=\sqrt{\frac{g}{5} g}=\sqrt{\frac{5}{4}}$

$T^{\prime}=T \sqrt{\frac{5}{4}}=\frac{10}{2} \sqrt{5}$

$T^{\prime}=5 \sqrt{5}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.