The minimum intensity of light to be detected by human eye is ${10^{ - 10}}W/{m^2}$. The number of photons of wavelength $5.6 \times {10^{ - 7}}m$ entering the eye, with pupil area ${10^{ - 6}}{m^2}$, per second for vision will be nearly
$100$
$200$
$300$
$400$
The work function of aluminium is $4.2eV.$ If two photons, each of energy $3.5 eV$strike an electron of aluminium, then emission of electrons will be
The eye can detect $5 ×10^4$ photons per square metre per sec of green light ($\lambda$ $= 5000\ \mathop A\limits^o $) while the ear can detect ${10^{ - 13}}\,(W/{m^2})$. The factor by which the eye is more sensitive as a power detector than the ear is close to
A $10\, kW$ transmitter emits radio waves of wavelength $500\, m$. The number of photons emitted per second by the transmitter is of the order of
The momentum of a photon is $2 \times {10^{ - 16}}gm-cm/sec$. Its energy is
Photoelectric effect experiments are performed using three different metal plates $\mathrm{p}, \mathrm{q}$ and $\mathrm{r}$ having work functions $\phi_p=2.0 \mathrm{eV}, \phi_q=2.5 \mathrm{eV}$ and $\phi_r=3.0 \mathrm{eV}$, respectively. A light beam containing wavelengths of $550 \mathrm{~nm}, 450 \mathrm{~nm}$ and $350 \mathrm{~nm}$ with equal intensities illuminates each of the plates. The correct I-V graph for the experiment is [Take $h c=1240 \mathrm{eV} \mathrm{nm}$ ]