The negation of the statement
''If I become a teacher, then I will open a school'', is
I will become a teacher and I will not open a school
Either I will not become a teacher or I will not open a school
Neither I will become a teacher nor I will open a school
I will not become a teacher or I will open a school
$\sim (p \wedge q)$ is equal to .....
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.
Negation of the statement : - $\sqrt{5}$ is an integer or $5$ is irrational is
Consider the two statements :
$(\mathrm{S} 1):(\mathrm{p} \rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{p})$ is a tautology
$(S2): (\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$ is a fallacy.
Then :
Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :