- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
The number of $p$ oints which can be expressed in the form $(p_1/q_ 1 , p_2/q_2)$, ($p_i$ and $q_i$ $(i = 1,2)$ are co-primes) and lie on the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ is
A
$4$
B
$8$
C
$12$
D
more than $12$
Solution
$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
$\mathrm{P}(3 \cos \theta, 2 \sin \theta)$
$\left(\frac{3\left(1-\tan ^{2} \frac{\theta}{2}\right)}{1+\tan ^{2} \frac{\theta}{2}}, 2 \times \frac{2 \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}\right)$
$\tan \frac{\theta}{2}$ can take infinite rational values.
Standard 11
Mathematics