Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

The number of $p$ oints which can be expressed in the form $(p_1/q_ 1 ,  p_2/q_2)$, ($p_i$ and $q_i$ $(i = 1,2)$ are co-primes) and lie on the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ is

A

$4$

B

$8$

C

$12$

D

more than $12$

Solution

$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

$\mathrm{P}(3 \cos \theta, 2 \sin \theta)$

$\left(\frac{3\left(1-\tan ^{2} \frac{\theta}{2}\right)}{1+\tan ^{2} \frac{\theta}{2}}, 2 \times \frac{2 \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}\right)$

$\tan \frac{\theta}{2}$ can take infinite rational values.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.