The equation of the ellipse whose centre is $(2, -3)$, one of the foci is $(3, -3)$ and the corresponding vertex is $(4, -3)$ is
$\frac{{{{(x - 2)}^2}}}{3} + \frac{{{{(y + 3)}^2}}}{4} = 1$
$\frac{{{{(x - 2)}^2}}}{4} + \frac{{{{(y + 3)}^2}}}{3} = 1$
$\frac{{{x^2}}}{3} + \frac{{{y^2}}}{4} = 1$
None of these
Latus rectum of ellipse $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ is
The locus of mid points of parts in between axes and tangents of ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ will be
The sum of focal distances of any point on the ellipse with major and minor axes as $2a$ and $2b$ respectively, is equal to
Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$
$B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$
$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ .
If set $C$ is singleton set then sum of all possible values of $m$ is
If end points of latus rectum of an ellipse are vertices of a square, then eccentricity of ellipse will be -