The equation of the ellipse whose centre is $(2, -3)$, one of the foci is $(3, -3)$ and the corresponding vertex is $(4, -3)$ is
$\frac{{{{(x - 2)}^2}}}{3} + \frac{{{{(y + 3)}^2}}}{4} = 1$
$\frac{{{{(x - 2)}^2}}}{4} + \frac{{{{(y + 3)}^2}}}{3} = 1$
$\frac{{{x^2}}}{3} + \frac{{{y^2}}}{4} = 1$
None of these
The position of the point $(4, -3)$ with respect to the ellipse $2{x^2} + 5{y^2} = 20$ is
If tangents are drawn from point $P(3\ sin\theta + 4\ cos\theta , 3\ cos\theta\ -\ 4\ sin\theta)$ , $\theta = \frac {\pi}{8}$ to the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ then angle between the tangents is
The distance between the foci of the ellipse $3{x^2} + 4{y^2} = 48$ is
If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide, then the value of ${b^2}$ is
Two sets $A$ and $B$ are as under:
$A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1 \,\,and\,\,\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ then : . . . . .