A triangle is formed by the tangents at the point $(2,2)$ on the curves $y^2=2 x$ and $x^2+y^2=4 x$, and the line $x+y+2=0$. If $r$ is the radius of its circumcircle, then $r ^2$ is equal to $........$.
$10$
$18$
$15$
$14$
If $\theta $ and $\phi $ are eccentric angles of the ends of a pair of conjugate diameters of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then $\theta - \phi $ is equal to
The eccentricity of the ellipse $ (x - 3)^2 + (y - 4)^2 =$ $\frac{{{y^2}}}{9}\,$ is
Let $P(2,2)$ be a point on an ellipse whose foci are $(5,2)$ and $(2,6)$, then eccentricity of ellipse is
The locus of the mid point of the line segment joining the point $(4,3)$ and the points on the ellipse $x^{2}+2 y^{2}=4$ is an ellipse with eccentricity
If the chord through the point whose eccentric angles are $\theta \,\& \,\phi $ on the ellipse,$(x^2/a^2) + (y^2/b^2) = 1$ passes through the focus, then the value of $ (1 + e)$ $\tan(\theta /2) \tan(\phi /2)$ is