Gujarati
Hindi
Trigonometrical Equations
normal

The number of all possible values of $\theta$, where $0<\theta<\pi$, for which the system of equations

$ (y+z) \cos 3 \theta=(x y z) \sin 3 \theta $

$ x \sin 3 \theta=\frac{2 \cos 3 \theta}{y}+\frac{2 \sin 3 \theta}{z} $

$ (x y z) \sin 3 \theta=(y+2 z) \cos 3 \theta+y \sin 3 \theta$ have a solution $\left(\mathrm{x}_0, \mathrm{y}_0, \mathrm{z}_0\right)$ with $\mathrm{y}_0 \mathrm{z}_0 \neq 0$, is

A

$2$

B

$3$

C

$4$

D

$5$

(IIT-2010)

Solution

$ (y+z) \cos 3 \theta-(x y z) \sin 3 \theta=0 $

$ x y z \sin 3 \theta=(2 \cos 3 \theta) z+(2 \sin 3 \theta) y $

$ \therefore(y+z) \cos 3 \theta=(2 \cos 3 \theta) z+(2 \sin 3 \theta) y=(y+2 z) \cos 3 \theta+y \sin 3 \theta $

$ y(\cos 3 \theta-2 \sin 3 \theta)=z \cos 3 \theta \text { and } $

$ y(\sin 3 \theta-\cos 3 \theta)=0 \Rightarrow \sin 3 \theta-\cos 3 \theta=0 \Rightarrow \sin 3 \theta=\cos 3 \theta $

$ \therefore 3 \theta=n \pi+\pi / 4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.