Trigonometrical Equations
normal

Number of solutions of $5$ $cos^2 \theta  -3 sin^2 \theta  + 6 sin \theta  cos \theta  = 7$ in the interval $[0, 2 \pi] $ is :-

A

$2$

B

$4$

C

$0$

D

None of these

Solution

$5 \cos ^{2} \theta-3 \sin ^{2} \theta+6 \sin \theta \cos \theta=7$

$5\left(\frac{1+\cos 2 \theta}{2}\right)-3\left(\frac{1-\cos 2 \theta}{2}\right)+3 \sin 2 \theta=7$

$4 \cos 2 \theta+3 \sin 2 \theta=6$

but $4 \cos 2 \theta+3 \sin 2 \theta \leq \sqrt{4^{2}+3^{2}}=5$

$\therefore $ Solution does not exist.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.