Number of solutions of $5$ $cos^2 \theta  -3 sin^2 \theta  + 6 sin \theta  cos \theta  = 7$ in the interval $[0, 2 \pi] $ is :-

  • A

    $2$

  • B

    $4$

  • C

    $0$

  • D

    None of these

Similar Questions

The equation $3\cos x + 4\sin x = 6$ has

The general value of $\theta $  that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in  I)$

The set of values of $x$ satisfying the equation,${2^{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 4}}} \right)}}$ $- 2$${\left( {0.25} \right)^{\frac{{{{\sin }^2}\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 4}}} \right)}}{{\cos \,\,2x}}}}$ $+ 1 = 0$, is :

If $K = sin^6x + cos^6x$, then $K$ belongs to the interval

The general value of $\theta $ in the equation $2\sqrt 3 \cos \theta = \tan \theta $, is