The number of values of $x$ in the interval $[0, 5\pi]$ satisfying the equation $3sin^2x\, \,-\,\, 7sinx + 2 = 0$ is
$0$
$5$
$6$
$10$
If $e ^{\left(\cos ^{2} x+\cos ^{4} x+\cos ^{6} x+\ldots \ldots \infty\right) \log _{e} 2}$ satisfies the equation $t ^{2}-9 t +8=0,$ then the value of $\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0 < x < \frac{\pi}{2}\right)$ is
Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.
Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to
Let $\theta, 0 < \theta < \pi / 2$, be an angle such that the equation $x ^2+4 x \cos \theta+\cot \theta=0$ has equal roots for $x$. Then $\theta$ in radians is
If $\sin \theta = \sqrt 3 \cos \theta , - \pi < \theta < 0$, then $\theta = $
If $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$, then $\sin \left( {\theta + \frac{\pi }{4}} \right)$ equals