Trigonometrical Equations
normal

The number of values of $x$ in the interval $[0, 5\pi]$ satisfying the equation $3sin^2x\, \,-\,\, 7sinx + 2 = 0$ is

A

$0$

B

$5$

C

$6$

D

$10$

Solution

$3 \sin ^{2} x-7 \sin x+2=0$

$\Rightarrow \quad(3 \sin x-1)(\sin x-2)=0$

$\Rightarrow \quad 3 \sin x=1$ or $\quad \sin x=2$

$\Rightarrow \quad \sin x=\frac{1}{3} \quad[\because \sin x=2 \text { is not possible }]$

since $x \in[0,5 \pi]$

$\therefore $ $6$ values of $x$ will be possible.

[$\because x$ will lie in ${I^{st}}{\rm{ }}or{\rm{ }}I{I^{nd}}$ quadrant]

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.