$-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ અંતરાલમાં $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ ના વાસ્તવિક ભિન્ન બીજની સંખ્યા મેળવો.
$1$
$2$
$3$
$4$
જો $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$ હોય, તો સાબિત કરો કે $|2 A|=4|A|$.
$'a'$ ની . . . . કિમંત માટે સમીકરણો $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$ ને શૂન્યતર ઉકેલ મળે.
જો $A = \int\limits_1^{\sin \theta } {\frac{t}{{1 + {t^2}}}} dt$ અને $B = \int\limits_1^{\cos ec\theta } {\frac{dt}{{t\left( {1 + {t^2}} \right)}}} $ , (કે જ્યાં $\theta \in \left( {0,\frac{\pi }{2}} \right))$, હોય તો $\left| {\begin{array}{*{20}{c}}
A&{{A^2}}&{ - B}\\
{{e^{A + B}}}&{{B^2}}&{ - 1}\\
1&{{A^2} + {B^2}}&{ - 1}
\end{array}} \right|$ ની કિમંત મેળવો.
જો સમીકરણો $ax^2 + bx + c = 0$ અને $px^2 + qx + r = 0$, ના બીજ અનુક્રમે $\alpha_1, \alpha_2$ અને $\beta_1, \beta_2$ હોય, તો સમીકરણોની પદ્ધતિ (Syteam of Linear Equatioin ) $\alpha_1y + \alpha_2z = 0$ અને $\beta_1y + \beta_2z = 0$ શૂન્યેતર ઉકેલ ધરાવે તો શું થાય ?
$xyz$ ના ગુણાકારની ન્યૂનતમ કિમત મેળવો કે જેથી $\left| {\begin{array}{*{20}{c}}
x&1&1 \\
1&y&1 \\
1&1&z
\end{array}} \right|$ ની કિમંત અનૃણ મળે.