3 and 4 .Determinants and Matrices
hard

The number of distinct real roots of $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ in the interval $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ is

A

$1$

B

$2$

C

$3$

D

$4$

(JEE MAIN-2021)

Solution

$\left|\begin{array}{lll} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{array}\right|=0$, $\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$

Apply: $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{3}$

$\left|\begin{array}{ccc} \sin x-\cos x & \cos x-\sin x & 0 \\ 0 & \sin x-\cos x & \cos x-\sin x \\ \cos x & \cos x & \sin x \end{array}\right|=0$

$(\sin x-\cos x)^{2}\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ \cos x & \cos x & \sin x\end{array}\right|=0$

$(\sin x-\cos x)^{2}(\sin x+2 \cos x)=0$

$\sin x=\cos x \quad$ or $\quad \sin x=-2 \cos x$

$\tan x=1$ or $\quad \tan x=-2$ (Not valid)

$\therefore x=\frac{\pi}{4}$ 

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.