The number of integers $a$ in the interval $[1,2014]$ for which the system of equations $x+y=a$, $\frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ has finitely many solutions is

  • [KVPY 2014]
  • A

    $0$

  • B

    $1007$

  • C

    $2013$

  • D

    $2014$

Similar Questions

The value of $x$ in the given equation ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$is

Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is

  • [KVPY 2021]

All the points $(x, y)$ in the plane satisfying the equation $x^2+2 x \sin (x y)+1=0$ lie on

  • [KVPY 2011]

If $x$ be real, then the maximum value of $5 + 4x - 4{x^2}$ will be equal to

If ${x^2} + 2ax + 10 - 3a > 0$ for all $x \in R$, then

  • [IIT 2004]