दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y=a, \frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ अंतराल $[0,2014]$ में कितनी प्राकृत संख्याओं $a$ के लिए दिये गए समीकरण युग्म के निश्चित रूप से परिमित अनेक हल हैं।

  • [KVPY 2014]
  • A

    $0$

  • B

    $1007$

  • C

    $2013$

  • D

    $2014$

Similar Questions

यदि समीकरण${x^3} + p{x^2} + qx + r = 0$ के दो मूलों का योग शून्य हेा तो $pq$ का मान होगा

यदि $x$ वास्तविक है तो $\frac{{{x^2} + 34x - 71}}{{{x^2} + 2x - 7}}$ का मान निम्न के बीच में नहीं होगा

समीकरण $\log ( - 2x)$ $ = 2\log (x + 1)$ के मूलों की संख्या होगी

समीकरण $\mathrm{x}\left(\mathrm{x}^2+3|\mathrm{x}|+5|\mathrm{x}-1|+6|\mathrm{x}-2|\right)=0$ के वास्तविक हलों की संख्या है ...........

  • [JEE MAIN 2024]

मान लें कि $a$ एक धनात्मक वास्तविक संख्या इस प्रकार है कि $a^5-a^3+a=2$. तब

  • [KVPY 2016]