- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
Let $a, b, c, d$ be real numbers between $-5$ and $5$ such that $|a|=\sqrt{4-\sqrt{5-a}},|b|=\sqrt{4+\sqrt{5-b}},|c|=\sqrt{4-\sqrt{5+c}}$ $|d|=\sqrt{4+\sqrt{5+d}}$ Then, the product $a b c d$ is
A
$11$
B
$-11$
C
$121$
D
$-121$
(KVPY-2017)
Solution
(a)
Given,
$|a|=\sqrt{4-\sqrt{5-a}}$
$|b|=\sqrt{4+\sqrt{5-b}}$
$|c|=\sqrt{4-\sqrt{5+c}}$
$|d|=\sqrt{4+\sqrt{5+d}}$
On squaring, we get
$a^2=4-\sqrt{5-a}$
$=a^2-4=-\sqrt{5-a}$
Again squaring, we get
$a^4-8 a^2+16=5-a$
$a^4-8 a^2+a+11=0$
Similarly, squaring other given equation and solving we can say that $a, b,-c,-d$ are roots of equation
$x^4-8 x^2+x+11=0$
$\therefore$ The product of roots
i.e. $a b c d=11$
Standard 11
Mathematics