Let $a, b, c, d$ be real numbers between $-5$ and $5$ such that  $|a|=\sqrt{4-\sqrt{5-a}},|b|=\sqrt{4+\sqrt{5-b}},|c|=\sqrt{4-\sqrt{5+c}}$ $|d|=\sqrt{4+\sqrt{5+d}}$ Then, the product $a b c d$ is

  • [KVPY 2017]
  • A

    $11$

  • B

    $-11$

  • C

    $121$

  • D

    $-121$

Similar Questions

Product of real roots of the equation ${t^2}{x^2} + |x| + \,9 = 0$

  • [AIEEE 2002]

Let $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :

  • [JEE MAIN 2024]

The sum of the roots of the equation, ${x^2}\, + \,\left| {2x - 3} \right|\, - \,4\, = \,0,$ is

  • [JEE MAIN 2014]

Let $a, b, c$ be the length of three sides of a triangle satisfying the condition $\left(a^2+b^2\right) x^2-2 b(a+c)$. $x+\left(b^2+c^2\right)=0$. If the set of all possible values of $x$ is the interval $(\alpha, \beta)$, then $12\left(\alpha^2+\beta^2\right)$ is equal to............................

  • [JEE MAIN 2024]

Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is

  • [KVPY 2021]