Let $a, b, c, d$ be real numbers between $-5$ and $5$ such that  $|a|=\sqrt{4-\sqrt{5-a}},|b|=\sqrt{4+\sqrt{5-b}},|c|=\sqrt{4-\sqrt{5+c}}$ $|d|=\sqrt{4+\sqrt{5+d}}$ Then, the product $a b c d$ is

  • [KVPY 2017]
  • A

    $11$

  • B

    $-11$

  • C

    $121$

  • D

    $-121$

Similar Questions

The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is

If $\alpha,\beta,\gamma, \delta$ are the roots of $x^4-100x^3+2x^2+4x+10 = 0$ then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ is equal to :-

Let $f(x)={{x}^{2}}-x+k-2,k\in R$ then the complete set of values of $k$ for which $y=\left| f\left( \left| x \right| \right) \right|$ is non-derivable at $5$ distinict points is 

Number of integral values of '$m$' for which $\{x\}^2 + 5m\{x\} - 3m + 1 < 0 $ $\forall x \in  R$, is (where $\{.\}$ denotes fractional part function)

If $a,b,c$ are distinct real numbers  and $a^3 + b^3 + c^3 = 3abc$ , then the equation $ax^2 + bx + c = 0$ has two roots, out of which one root is