The number of points in $(-\infty, \infty)$, for which $x^2-x \sin x-\cos x=0$, is
$6$
$4$
$2$
$0$
The number of solutions of the equation $\sin (9 x)+\sin (3 x)=0$ in the closed interval $[0,2 \pi]$ is
Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.
Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to
The numbers of solution $(s)$ of the equation $\left( {1 - \frac{1}{{2\,\sin x}}} \right){\cos ^2}\,2x\, = \,2\,\sin x\, - \,3\, + \,\frac{1}{{\sin x}}$ in $[0,4\pi ]$ is
Solve $\sin 2 x-\sin 4 x+\sin 6 x=0$
If $\sec x\cos 5x + 1 = 0$, where $0 < x < 2\pi $, then $x =$