The number of solutions of the equation $32^{\tan ^{2} x}+32^{\sec ^{2} x}=81,0 \leq x \leq \frac{\pi}{4}$ is :

  • [JEE MAIN 2021]
  • A

    $3$

  • B

    $1$

  • C

    $0$

  • D

    $2$

Similar Questions

If $\cos \,x = \frac{{2\cos y - 1}}{{2 - \cos y}},x,\,y\, \in \,\left( {0,\pi } \right),$ then $tan(x/2)cot(y/2) =$

If $\sec x\cos 5x + 1 = 0$, where $0 < x < 2\pi $, then $x =$

  • [IIT 1963]

Let $f(x) = sinx + 2sin^2x + 3sin^3x + 4sin^4x+....\infty $ , then number of solution $(s)$ of equation $f(x) = 2$ in $x \in \left[ { - \pi ,\pi } \right] - \left\{ { \pm \frac{\pi }{2}} \right\}$ is

If $2{\tan ^2}\theta = {\sec ^2}\theta ,$ then the general value of $\theta $ is

The number of real solutions of the equation $2 \sin 3 x+\sin 7 x-3=0$, which lie in the interval $[-2 \pi, 2 \pi]$ is

  • [KVPY 2017]