The number of positive integers $x$ satisfying the equation $\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}=\frac{13}{2}$ is.
$0$
$1$
$2$
more than $2$
The number of distinct real roots of the equation $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$, is ...........
The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by
Consider a three-digit number with the following properties:
$I$. If its digits in units place and tens place are interchanged, the number increases by $36$ ;
$II.$ If its digits in units place and hundreds place are interchanged, the number decreases by $198 .$
Now, suppose that the digits in tens place and hundreds place are interchanged. Then, the number
Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is
Suppose the quadratic polynomial $p(x)=a x^2+b x+c$ has positive coefficient $a, b, c$ such that $b-a=c-b$. If $p(x)=0$ has integer roots $\alpha$ and $\beta$ then what could be the possible value of $\alpha+\beta+\alpha \beta$ if $0 \leq \alpha+\beta+\alpha \beta \leq 8$