- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
hard
The number of positive integers $x$ satisfying the equation $\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}=\frac{13}{2}$ is.
A
$0$
B
$1$
C
$2$
D
more than $2$
(KVPY-2021)
Solution
(c)
$\frac{1}{ x }+\frac{1}{ x +1}+\frac{1}{ x +2}=\frac{13}{12}$
$\frac{ x ^2+3 x +2+ x ^2+2 x + x ^2+ x }{ x ( x +1)( x +2)}=\frac{13}{12}$
$\frac{3 x ^2+6 x +2}{ x ( x +1)( x +2)}=\frac{13}{12}$
$36 x ^2+72 x +24=13\left( x ^3+3 x ^2+2 x \right)$
$13 x ^3+3 x ^2-36 x -24=0$
$( x -2)\left(13 x ^2+29 x +12\right)=0$
only one positive integral value $x =2$
Standard 11
Mathematics