A man standing on a railway platform noticed that a train took $21\, s$ to cross the platform (this means the time elapsed from the moment the engine enters the platform till the last compartment leaves the platform) which is $88\,m$ long, and that it took $9 s$ to pass him. Assuming that the train was moving with uniform speed, what is the length of the train in meters?
$55$
$60$
$66$
$72$
Let $\alpha$ and $\beta$ be the roots of the equation $\mathrm{x}^{2}-\mathrm{x}-1=0 .$ If $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ then which one of the following statements is not true?
If $\alpha $, $\beta$, $\gamma$ are roots of ${x^3} - 2{x^2} + 3x - 2 = 0$ , then the value of$\left( {\frac{{\alpha \beta }}{{\alpha + \beta }} + \frac{{\alpha \gamma }}{{\alpha + \gamma }} + \frac{{\beta \gamma }}{{\beta + \gamma }}} \right)$ is
Let $\alpha, \beta$ be roots of $x^2+\sqrt{2} x-8=0$. If $\mathrm{U}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$, then $\frac{\mathrm{U}_{10}+\sqrt{2} \mathrm{U}_9}{2 \mathrm{U}_8}$ is equal to ............
The number of pairs of reals $(x, y)$ such that $x=x^2+y^2$ and $y=2 x y$ is
The sum of the roots of the equation $x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$, is :