If $a+b+c=1, a b+b c+c a=2$ and $a b c=3$, then the value of $a^{4}+b^{4}+c^{4}$ is equal to $....$

  • [JEE MAIN 2021]
  • A

    $15$

  • B

    $13$

  • C

    $17$

  • D

    $21$

Similar Questions

The maximum value $M$ of $3^x+5^x-9^x+15^x-25^x$, as $x$ varies over reals, satisfies

  • [KVPY 2012]

If $x$ be real, the least value of ${x^2} - 6x + 10$ is

Let $a$ , $b$ , $c$ are roots of equation $x^3 + 8x + 1 = 0$ ,then the value of 

 $\frac{{bc}}{{(8b + 1)(8c + 1)}} + \frac{{ac}}{{(8a + 1)(8c + 1)}} + \frac{{ab}}{{(8a + 1)(8b + 1)}}$ is equal to

The sum of all the real values of $x$ satisfying the equation ${2^{\left( {x - 1} \right)\left( {{x^2} + 5x - 50} \right)}} = 1$  is

  • [JEE MAIN 2017]

Number of integral values of '$m$' for which $\{x\}^2 + 5m\{x\} - 3m + 1 < 0 $ $\forall x \in  R$, is (where $\{.\}$ denotes fractional part function)