The number of positive integral solutions $\left| {\,\,\begin{array}{*{20}{c}}{1 - \lambda }&2&1\\{ - 3}&\lambda &{ - 2}\\2&{ - 2}&{1 + \lambda }\end{array}\,\,} \right|$ $= 0$ is
$0$
$2$
$3$
$1$
The number of integers $x$ satisfying $-3 x^4+\operatorname{det}\left[\begin{array}{ccc}1 & x & x^2 \\ 1 & x^2 & x^4 \\ 1 & x^3 & x^6\end{array}\right]=0$ is equal to
The determinant $\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right|$ is not equal to
The values of $\lambda$ and $\mu$ for which the system of linear equations
$x+y+z=2$
$x+2 y+3 z=5$
$x+3 y+\lambda z=\mu$
has infinitely many solutions are, respectively
One of the roots of the given equation $\left| {\,\begin{array}{*{20}{c}}{x + a}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right| = 0$ is
Let $\alpha, \beta$ and $\gamma$ be real numbers such that the system of linear equations
$x+2 y+3 z=\alpha$
$4 x+5 y+6 z=\beta$
$7 x+8 y+9 z=\gamma-$
is consistent. Let $| M |$ represent the determinant of the matrix
$M=\left[\begin{array}{ccc}\alpha & 2 & \gamma \\ \beta & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$
Let $P$ be the plane containing all those $(\alpha, \beta, \gamma)$ for which the above system of linear equations is consistent, and $D$ be the square of the distance of the point $(0,1,0)$ from the plane $P$.
($1$) The value of $| M |$ is
($2$) The value of $D$ is