Find area of the triangle with vertices at the point given in each of the following: $(-2,-3),(3,2),(-1,-8)$
$15$ square units
$12$ square units
$14$ square units
$20$ square units
Let $\lambda $ be a real number for which the system of linear equations $x + y + z = 6$
; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ Has indefinitely many solutions. Then $\lambda $ is a root of the quadratic equation
If the system of linear equations $x + 2ay + az = 0$ $x + 3by + bz = 0$ $x + 4cy + cz = 0$ has a non-zero solution, then $a, b, c$
The determinant $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ is not divisible by
For what value of $k$ to the following system of equations possess a non-trivial solution ?
$x + ky + 3z = 0$ ; $3x + ky + 2z = 0$ ; $2x + 3y + 4z = 0$
If the system of equations $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$ has infinitely many solutions, then $13 \alpha \beta$ is equal to