- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If $\left| {\begin{array}{*{20}{c}}
{^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\
{^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\
{^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}}
\end{array}} \right| = 0$ then $r$ is equal to
A
$3$
B
$4$
C
$5$
D
$6$
Solution
${C_2} \to {C_2} + {C_1}$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{\,^9}{C_4}}&{{\,^{10}}{C_5}}&{{\,^{10}}{C_r}}\\
{{\,^{10}}{C_6}}&{{\,^{11}}{C_7}}&{{\,^{11}}{C_{r + 2}}}\\
{{\,^{11}}{C_8}}&{{\,^{12}}{C_9}}&{{\,^{12}}{C_{r + 1}}}
\end{array}} \right| = 0$
$ \Rightarrow \boxed{r = 5}$
Standard 12
Mathematics