3 and 4 .Determinants and Matrices
normal

If $\left| {\begin{array}{*{20}{c}}
  {^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\ 
  {^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\ 
  {^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}} 
\end{array}} \right| = 0$ then $r$ is equal to 

A

$3$

B

$4$

C

$5$

D

$6$

Solution

${C_2} \to {C_2} + {C_1}$

$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{\,^9}{C_4}}&{{\,^{10}}{C_5}}&{{\,^{10}}{C_r}}\\
{{\,^{10}}{C_6}}&{{\,^{11}}{C_7}}&{{\,^{11}}{C_{r + 2}}}\\
{{\,^{11}}{C_8}}&{{\,^{12}}{C_9}}&{{\,^{12}}{C_{r + 1}}}
\end{array}} \right| = 0$

$ \Rightarrow \boxed{r = 5}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.