- Home
- Standard 11
- Mathematics
Trigonometrical Equations
hard
The number of roots of the equation $\cos ^7 \theta-\sin ^4 \theta=1$ that lie in the interval $[0,2 \pi]$ is
A
$2$
B
$3$
C
$4$
D
$8$
(KVPY-2010)
Solution
(a)
We have, $\cos ^7 \theta-\sin ^4 \theta=1$
$\Rightarrow \quad \cos ^7 \theta=1+\sin ^4 \theta$
LHS $\cos ^7 \theta \in[-1,1]$
$RHS \geq 1$
Hence, $\cos ^7 \theta=1$ and $\sin ^4 \theta=0$ $\therefore \theta=0,2 \pi$ in $[0,2 \pi]$
Standard 11
Mathematics