Gujarati
Trigonometrical Equations
hard

The number of roots of the equation $\cos ^7 \theta-\sin ^4 \theta=1$ that lie in the interval $[0,2 \pi]$ is

A

$2$

B

$3$

C

$4$

D

$8$

(KVPY-2010)

Solution

(a)

We have, $\cos ^7 \theta-\sin ^4 \theta=1$

$\Rightarrow \quad \cos ^7 \theta=1+\sin ^4 \theta$

LHS $\cos ^7 \theta \in[-1,1]$

$RHS \geq 1$

Hence, $\cos ^7 \theta=1$ and $\sin ^4 \theta=0$ $\therefore \theta=0,2 \pi$ in $[0,2 \pi]$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.