If $\tan 2\theta \tan \theta = 1$, then the general value of $\theta $ is
$\left( {n + \frac{1}{2}} \right)\frac{\pi }{3}$
$\left( {n + \frac{1}{2}} \right)\,\pi $
$\left( {2n \pm \frac{1}{2}} \right)\frac{\pi }{3}$
None of these
The number of distinct solutions of the equation $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ in the interval $[0,2 \pi],$ is
Let $A=\left\{\theta \in R \mid \cos ^2(\sin \theta)+\sin ^2(\cos \theta)=1\right\}$ and $B=\{\theta \in R \mid \cos (\sin \theta) \sin (\cos \theta)=0\}$. Then, $A \cap B$
If $\tan (\cot x) = \cot (\tan x),$ then $\sin 2x =$
The general solution of $\frac{{\tan \,2x\, - \,\tan \,x}}{{1\, + \,\tan \,x\,\tan \,2x}}\, = \,1$ is
If the equation $tan^4x -2sec^2x + [a]^2 = 0$ has atleast one solution, then the complete range of $'a'$ (where $a \in R$ ) is
(Note : $[k]$ denotes greatest integer less than or equal to $k$ )