Gujarati
Trigonometrical Equations
hard

The number of solutions of the equation $\sin \theta+\cos \theta=\sin 2 \theta$ in the interval $[-\pi, \pi]$ is

A

$1$

B

$2$

C

$3$

D

$4$

(KVPY-2017)

Solution

(b)

We have, $\sin \theta+\cos \theta=\sin 2 \theta$ On squaring both sides, we get $\sin ^2 \theta+\cos ^2 \theta+\sin 2 \theta=\sin ^2 2 \theta$ $\Rightarrow \sin ^2 2 \theta-\sin 2 \theta-1=0$

$\Rightarrow \quad \sin 2 \theta=\frac{1 \pm \sqrt{5}}{2}$

$\Rightarrow \sin 2 \theta=\frac{1-\sqrt{5}}{2} \Rightarrow \sin 2 \theta \neq \frac{\sqrt{5}+1}{2}$

$\therefore$ Two solutions exist interval $[-\pi, \pi]$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.