$[-\pi, \pi]$ के अन्तराल में $\sin \theta+\cos \theta=\sin 2 \theta$ समीकरण के हलों की संख्या होगी
$1$
$2$
$3$
$4$
यदि $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, तो $\theta $ का व्यापक मान है
यदि समीकरण $2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1$, $x \in[0, \pi]$ के हलों की संख्या $n$ है तथा $S$ इन सभी हलों का योगफल है, तब क्रमित युग्म $( n , S )$ है
यदि $f(x) = \cos \sqrt x $, तब निम्न कथन सत्य है
यदि समीकरण $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ के $\theta$ में वास्तविक हल है, तो $\lambda$ निम्न में से किस अन्तराल में स्थित है ?
यदि $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, तब $\theta = $