6.Permutation and Combination
normal

The number of values of $'r'$ satisfying $^{69}C_{3r-1} - ^{69}C_{r^2}=^{69}C_{r^2-1} - ^{69}C_{3r}$ is :-  

A

$1$

B

$2$

C

$3$

D

$7$

Solution

${\,^{69}}{{\rm{C}}_{3r – 1}} + {\,^{69}}{{\rm{C}}_{35}} = {\,^{69}}{{\rm{C}}_{{r^2}}} + {\,^{69}}{{\rm{C}}_{{r^2} – 1}}$

$ \Rightarrow {\,^{70}}{C_{3r}} = {\,^{70}}{C_{{r^2}}}$

$\Rightarrow \mathrm{r}^{2}=3 \mathrm{r} \quad$     or      $\quad \mathrm{r}^{2}+3 \mathrm{r}=70$

$r = 0{\rm{ or }}\,\,\,r = 3,\,\,\,\,\,\,{r^2} + 3r – 70 = 0$

$ \Rightarrow (r + 10)(r – 7) = 0$

$r = 0,{\rm{ or }}\,\,\,r = 3,\,\,\,\,\,\,\,\,r =  – 10,{\rm{ or }}r = 7$

$(r=0, r=-10 \text { not possible })$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.