Gujarati
Hindi
Trigonometrical Equations
normal

The number of values of $\theta$ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n \pi}{5}$ for $n=0, \pm 1, \pm 2$ and $\tan \theta=\cot 5 \theta$ as well as $\sin 2 \theta=\cos 4 \theta$ is

A

$3$

B

$2$

C

$5$

D

$8$

(IIT-2010)

Solution

$ \tan \theta=\cot 5 \theta $

$ \Rightarrow \cos 6 \theta=0 $

$ 4 \cos ^3 2 \theta-3 \cos 2 \theta=0 $

$ \Rightarrow \cos 2 \theta=0 \text { or } \pm \frac{\sqrt{3}}{2} $

$ \sin 2 \theta=\cos 4 \theta $

$ \Rightarrow 2 \sin ^2 2 \theta+\sin 2 \theta-1=0 $

$ 2 \sin ^2 2 \theta+2 \sin 2 \theta-\sin 2 \theta-1=0 $

$ \sin 2 \theta=-1 \text { or } \sin 2 \theta=\frac{1}{2} $

$ \cos 2 \theta=0 \text { and } \sin 2 \theta=-1 $

$ \Rightarrow 2 \theta=-\frac{\pi}{2} \Rightarrow \theta=-\frac{\pi}{4} $

$ \cos 2 \theta= \pm \frac{\sqrt{3}}{2}, \sin 2 \theta=\frac{1}{2} $

$ \Rightarrow 2 \theta=\frac{\pi}{6}, \frac{5 \pi}{6} \Rightarrow \theta=\frac{\pi}{12}, \frac{5 \pi}{12} $

$ \therefore \theta=-\frac{\pi}{4}, \frac{\pi}{12}, \frac{5 \pi}{12}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.