The optical properties of a medium are governed by the relative permitivity $({ \in _r})$ and relative permeability $(\mu _r)$. The refractive index is defined as $n = \sqrt {{ \in _r}{\mu _r}} $. For ordinary material ${ \in _r} > 0$ and $\mu _r> 0$ and the positive sign is taken for the square root. In $1964$, a Russian scientist V. Veselago postulated the existence of material with $\in _r < 0$ and $u_r < 0$. Since then such 'metamaterials' have been produced in the laboratories and their optical properties studied. For such materials $n = - \sqrt {{ \in _r}{\mu _r}} $. As light enters a medium of such refractive index the phases travel away from the direction of propagation.
$(i) $ According to the description above show that if rays of light enter such a medium from air (refractive index $=1)$ at an angle $\theta $ in $2^{nd}$ quadrant, then the refracted beam is in the $3^{rd}$ quadrant.
$(ii)$ Prove that Snell's law holds for such a medium.
$(i)$ Let us first understand about equivalent optical path length of a given transparent medium.
According to definition, refractive index of a given denser transparent medium is,
$n=\frac{c}{v} \Rightarrow c=n v$
If time taken by light ray to travel $l$ distance in above medium is $t$ then,
$v=\frac{l}{t} \Rightarrow t=\frac{l}{v}$
- Now, the distance that can be travelled by light ray in air or in vacuum in above time is called an equivalent optical path length of a given denser transparent medium. If it is shown by symbol $l_{0}$ then since velocity of light ray in air or vacuum is $c$, we can write,
$c=\frac{l_{0}}{t}=\frac{l_{0}}{\left(\frac{l}{v}\right)}=\frac{v l_{0}}{l}$
$\therefore \frac{c}{v}=\frac{l_{0}}{l}$
$\therefore n=\frac{l_{0}}{l}$
$\therefore l_{0}=n l$$...(2)$
Above equation is used in the solution of present question.
The electric field associated with an $e.m.$ wave in vacuum is given by $\vec E = \hat i\,40\,\cos \,\left( {kz - 6 \times {{10}^8}\,t} \right)$. where $E$, $z$ and $t$ are in $volt/m$, meter and seconds respectively. The value of wave factor $k$ is ....... $m^{-1}$.
An infinitely long thin wire carrying a uniform linear static charge density $\lambda $ is placed along the $z-$ axis (figure). The wire is set into motion along its length with a uniform velocity $V = v{\hat k_z}$. Calculate the pointing vector $S = \frac{1}{{{\mu _0}}}(\vec E \times \vec B)$ .
Figure given shows the face of a cathode-ray oscilloscope tube, as viewed from in front. $i.e.$ the electron beam is coming out normally from the plane of the paper. The electron beam passes through a region where there are electric and magnetic fields directed as shown. The deflections of the spot from the center of the screen produced by the electric field $E$ and the magnetic field $B$ separately are equal in magnitude. Which one of the diagrams below shows a possible position of the spot on the screen when both fields are operating?
The magnetic field in a plane electromagnetic wave is given by
${B_y} = \left( {2 \times {{10}^{ - 7}}} \right)\sin \left( {0.5 \times {{10}^3}x + 1.5 \times {{10}^{11}}t} \right)T$
$(a)$ What is the wavelength and frequency of the wave?
$(b)$ Write an expression for the electric field.
Given below are two statements:
Statement $I$ : A time varying electric field is a source of changing magnetic field and vice-versa. Thus a disturbance in electric or magnetic field creates $EM$ waves.
Statement $II$ : In a material medium. The $EM$ wave travels with speed $v =\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$.
In the light of the above statements, choose the correct answer from the options given below