A plane electromagnetic wave propagating in $\mathrm{x}$-direction is described by
$\mathrm{E}_{\mathrm{y}}=\left(200\ \mathrm{Vm}^{-1}\right) \sin \left[1.5 \times 10^7 \mathrm{t}-0.05\ \mathrm{x}\right] \text {; }$
The intensity of the wave is :(Use $\epsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ )
$35.4 \ \mathrm{Wm}^{-2}$
$53.1 \ \mathrm{Wm}^{-2}$
$26.6 \ \mathrm{Wm}^{-2}$
$106.2 \ \mathrm{Wm}^{-2}$
Aplane electromagnetic wave is incident on a plane surface of area A normally, and is perfectly reflected. If energy $E$ strikes the surface in time $t$ then average pressure exerted on the surface is ( $c=$ speed of light)
A radio can tune in to any station in the $7.5\; MHz$ to $12\; MHz$ band. What is the corresponding wavelength band?
An electromagnetic wave in vacuum has the electric and magnetic field $\vec E$ and $\vec B$ , which are always perpendicular to each other. The direction of polarization is given by $\vec X$ and that of wave propagation by $\vec k$ . Then
There exists a uniform magnetic and electric field of magnitude $1\, T$ and $1\, V/m$ respectively along positive $y-$ axis. A charged particle of mass $1\,kg$ and of charge $1\, C$ is having velocity $1\, m/sec$ along $x-$ axis and is at origin at $t = 0.$ Then the co-ordinates of particle at time $\pi$ seconds will be :-
A plane EM wave is propagating along $\mathrm{x}$ direction. It has a wavelength of $4 \mathrm{~mm}$. If electric field is in y direction with the maximum magnitude of $60 \mathrm{Vm}^{-1}$, the equation for magnetic field is:$7$