Basic of Logarithms
easy

${{3x - 1} \over {(1 - x + {x^2})\,(2 + x)}}$ નું આંશિક અપૂર્ણાક મેળવો.

A

${x \over {({x^2} - x + 1)}}$+${1 \over {x + 2}}$

B

${1 \over {{x^2} - x + 1}} + {x \over {x + 2}}$

C

${x \over {{x^2} - x + 1}} - {1 \over {x + 2}}$

D

${{ - 1} \over {{x^2} - x + 1}} + {x \over {x + 2}}$

Solution

(c) ${{3x – 1} \over {(1 – x + {x^2})\,(2 + x)}} = {{Ax + B} \over {{x^2} – x + 1}} + {C \over {x + 2}}$

==> $(3x – 1) = (Ax + B)\,(x + 2)\, + \,C({x^2} – x + 1)$

Comparing the coefficient of like terms, we get $A + C = 0$, $2A + B – C = 3$, $2B + C = – 1$ ==> $A = 1$, $B = 0$, $C = – 1$

$\therefore {{3x – 1} \over {(1 – x + {x^2})\,(2 + x)}} = {x \over {{x^2} – x + 1}} – {1 \over {x + 2}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.