Basic of Logarithms
easy

જો ${{{x^2}} \over {({x^2} + {a^2})\,({x^2} + {b^2})}} = k\left( {{{{a^2}} \over {{x^2} + {a^2}}} - {{{b^2}} \over {{x^2} + {b^2}}}} \right)$ તો $k =$

A

${a^2} - {b^2}$

B

${1 \over {a + b}}$

C

${1 \over {a - b}}$

D

${1 \over {{a^2} - {b^2}}}$

Solution

(d) ${x^2} = k\,\,[{a^2}({x^2} + {b^2}) – {b^2}({x^2} + {a^2})]$

$ \Rightarrow $${x^2} = k\,[({a^2} – {b^2}){x^2}] \Rightarrow 1 = k({a^2} – {b^2})$

$\therefore k = {1 \over {{a^2} – {b^2}}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.