The pattern of standing waves formed on a stretched string at two instants of time (extreme, mean) are shown in figure. The velocity of two waves superimposing to form stationary waves is $360\, ms^{-1}$ and their frequencies are $256\, Hz$. Which is not possible value of $t$ (in $\sec$) :-
$9.8 × 10^{-4}$
$10^{-3}$
$2.9 × 10^{-3}$
$4.9 × 10^{-3}$
Two identical sounds $S_1$ and $S_2$ reach at a point $P$ in phase. The resultant loudness at point $P$ is $n\,\, dB$ higher than the loudness of $S_1$. The value of $n$ is
A string $1\,m$ long is drawn by a $300\,Hz$ vibrator attached to its end. The string vibrates in three segments. The speed of transverse waves in the string is equal to ..... $m/s$
The figure represents the instantaneous picture of a transverse harmonic wave traveling along the negative $x$-axis. Choose the correct alternative $(s)$ related to the movement of the nine points shown in the figure. The stationary points is/are
A train whistling at constant frequency is moving towards a station at a constant speed $V$. The train goes past a stationary observer on the station. The frequency $n'$ of the sound as heard by the observer is plotted as a function of time $t (Fig.)$ . Identify the expected curve
A sound-source is moving in a circle and an observer is outside the circle at $O$ as shown in figure. If the frequencies as heard by the listener are $\nu _1, \nu _2$ and $\nu _3$ when the source is at $A, B$ and $C$ position, respectively, then