The plot of the number $(N)$ of decayed atoms versus activity $(A)$ of a radioactive substance is
The half life of the isotope $_{11}N{a^{24}}$ is $15 \,hrs$. How much time does it take for $\frac{7}{8}th$ of a sample of this isotope to decay.........$hrs$
A radioactive sample $\mathrm{S} 1$ having an activity $5 \mu \mathrm{Ci}$ has twice the number of nuclei as another sample $\mathrm{S} 2$ which has an activity of $10 \mu \mathrm{Ci}$. The half lives of $\mathrm{S} 1$ and $\mathrm{S} 2$ can be
A radioactive sample has an average life of $30\, {ms}$ and is decaying. A capacitor of capacitance $200\, \mu\, {F}$ is first charged and later connected with resistor $^{\prime}{R}^{\prime}$. If the ratio of charge on capacitor to the activity of radioactive sample is fixed with respect to time then the value of $^{\prime}R^{\prime}$ should be $....\,\Omega$
The half-life of radon is $3.8\, days$. Three forth of a radon sample decay in ............$days$
Which sample, $A$ or $B$ shown in figure has shorter mean-life?