The activity of a sample of a radioactive material is ${A_1}$ at time ${t_1}$ and ${A_2}$ at time ${t_2}$ $({t_2} > {t_1}).$ If its mean life $T$, then
${A_1}{t_1} = {A_2}{t_2}$
${A_1} - {A_2} = {t_2} - {t_1}$
${A_2} = {A_1}{e^{({t_1} - {t_2})/T}}$
${A_2} = {A_1}{e^{({t_1}/{t_2})T}}$
$N$ atoms of a radioactive element emit $n$ alpha particles per second. The half life of the element is
Consider a radioactive nucleus $A$ which decays to a stable nucleus $C$ through the following sequence : $A \to B \to C$ Here $B$ is an intermediate nuclei which is also radioactive. Considering that there are $N_0$, atoms of $A$ initially, plot the graph showing the variation of number of atoms of $A$ and $B$ versus time.
Two radioactive nuclei $P$ and $Q,$ in a given sample decay into a stable nucleus $R.$ At time $t = 0,$ number of $P$ species are $4\,\, N_0$ and that of $Q$ are $N_0$. Half-life of $P$ (for conversion to $R$) is $1$ minute where as that of $Q$ is $2$ minutes. Initially there are no nuclei of $R$ present in the sample. When number of nuclei of $P$ and $Q$ are equal, the number of nuclei of $R$ present in the sample would be
The average life $T$ and the decay constant $\lambda $ of a radioactive nucleus are related as
Let $N_{\beta}$ be the number of $\beta $ particles emitted by $1$ gram of $Na^{24}$ radioactive nucler (half life $= 15\, hrs$) in $7.5\, hours$, $N_{\beta}$ is close to (Avogadro number $= 6.023\times10^{23}\,/g.\, mole$)