Gujarati
13.Nuclei
hard

The activity of a sample of a radioactive material is ${A_1}$ at time ${t_1}$ and ${A_2}$ at time ${t_2}$ $({t_2} > {t_1}).$ If its mean life $T$, then

A

${A_1}{t_1} = {A_2}{t_2}$

B

${A_1} - {A_2} = {t_2} - {t_1}$

C

${A_2} = {A_1}{e^{({t_1} - {t_2})/T}}$

D

${A_2} = {A_1}{e^{({t_1}/{t_2})T}}$

Solution

(c) $A = {A_0}{e^{ – \lambda t}} = {A_0}{e^{ – t/\tau }};$ where $\tau = $ mean life

So $ \Rightarrow \Delta L = \frac{h}{{2\pi }}({n_2} – {n_1})$

==>${A_0} = \frac{{{A_1}}}{{{e^{ – {t_1}/T}}}} = {A_1}{e^{{t_1}/T}}$

$\therefore {A_2} = {A_0}{e^{ – t/T}} = ({A_1}{e^{{t_1}/T}})\,{e^{ – {t_2}/T}}$

$ \Rightarrow {A_2} = {A_1}{e^{({t_1} – {t_2})/T}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.