The position vector of a particle is determined by the expression $\vec r = 3{t^2}\hat i + 4{t^2}\hat j + 7\hat k$ The distance traversed in first $10 \,sec$ is........ $m$
$500$
$300$
$150$
$100$
Establish the following vector inequalities geometrically or otherwise:
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
When does the equality sign above apply?
If $\overrightarrow R$ is the resultant vector of two vectors $\overrightarrow A $ and $\overrightarrow B $, then $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $.
Two forces $P$ and $Q$, of magnitude $2F$ and $3F$, respectively, are at an angle $\theta $ with each other. If the force $Q$ is doubled, then their resultant also gets doubled. Then, the angle $\theta $ is ....... $^o$
$\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$ then find their addition by algebric method.