The position vectors of points $A, B, C$ and $D$ are $A = 3\hat i + 4\hat j + 5\hat k,\,\,B = 4\hat i + 5\hat j + 6\hat k,\,\,C = 7\hat i + 9\hat j + 3\hat k$ and $D = 4\hat i + 6\hat j$ then the displacement vectors $AB$ and $CD $ are
Perpendicular
Antiparallel
Parallel
Inclined at an angle of $60^°$
The vectors from origin to the points $A$ and $B$ are $\overrightarrow A = 3\hat i - 6\hat j + 2\hat k$ and $\overrightarrow B = 2\hat i + \hat j - 2\hat k$ respectively. The area of the triangle $OAB$ be
Let $\left| {{{\vec A}_1}} \right| = 3,\,\left| {\vec A_2} \right| = 5$, and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 5$. The value of $\left( {2{{\vec A}_1} + 3{{\vec A}_2}} \right)\cdot \left( {3{{\vec A}_1} - 2{{\vec A}_2}} \right)$ is
Obtain scalar product in terms of Cartesian component of vectors.