- Home
- Standard 11
- Mathematics
The positive value of $a$ so that the co-efficient of $x^5$ is equal to that of $x^{15}$ in the expansion of ${\left( {{x^2}\,\, + \,\,\frac{a}{{{x^3}}}} \right)^{10}}$ is
$\frac{1}{{2\,\sqrt 3 }}$
$\frac{1}{{\sqrt 3 }}$
$1$
$2 \sqrt 3$
Solution
$\left(x^{2}+\frac{a}{x^{3}}\right)^{10}$
As we know that the general term $\left(T_{r+1}\right)$ of the expression $(a+b)^{n}$ is-
$T_{r+1}={ }_{n} C_{r} a^{n-r} b^{n}$
Therefore, in the given expansion $\left(x^{2}+\frac{a}{x^{3}}\right)^{10}$ $a=x^{2}$
$b=\frac{a}{x^{3}}$
$n=10$
$\therefore$ general term of the given expression-
$T_{r+1}={ }_{10} C_{r} x^{20-2 r} \frac{a^{r}}{x^{3 r}}$
$\Rightarrow T_{r+1}={ }_{10} C_{r} x^{20-5 r} a^{r}$
For coefficient of $x^{5}-$
$20-5 r=5$
$5 r=15 \Rightarrow r=3$
$\therefore T_{4}={ }_{10} C_{3} x^{5} a^{3}$
For coefficient of $x^{15}-$
$20-5 r=15$
$5 r=5 \Rightarrow r=1$
$\therefore T_{2}={ }_{10} C_{1} x^{15} a$
Given that the coefficient of $x^{5}$ is equal to the coefficient of $x^{15}$, i.e.,
${ }_{10} C_{3} a^{3}={ }_{10} C_{1} a \ldots$
As we know that,
${ }_{n} C_{r}=\frac{n !}{r !(n-r) !}$
$\therefore{ }_{10} C_{3}=\frac{10 !}{3 !(10-3) !}=120$
${ }_{10} C_{1}=\frac{10 !}{1 !(10-1) !}=10$
Now from $e q^{n}(1)$, we have
$120 \times a^{3}=10 a$
$\Rightarrow a^{2}=\frac{1}{12}$
$\Rightarrow a=\pm \frac{1}{2 \sqrt{3}}$
As we have to find positive value of $a$. $\therefore a=\frac{1}{2 \sqrt{3}}$