The potential energy of a particle varies with distance $x$ from a fixed origin as $V = \frac{{A\sqrt x }}{{x + B}}$,where
$A$ and $B$ are constants. The dimensions of $AB$ are

  • [AIIMS 2017]
  • A

    $ML^{5/2} T^{-2}$

  • B

    $M^1 L^2 T^{-2}$

  • C

    $M^{3/2} L^{3/2} T^{-2}$

  • D

    $M^1 L^{7/2} T^{-2}$

Similar Questions

A neutron star with magnetic moment of magnitude $m$ is spinning with angular velocity $\omega$ about its magnetic axis. The electromagnetic power $P$ radiated by it is given by $\mu_{0}^{x} m^{y} \omega^{z} c^{u}$, where $\mu_{0}$ and $c$ are the permeability and speed of light in free space, respectively. Then,

  • [KVPY 2017]

If energy $(E),$ velocity $(V)$ and time $(T)$ are chosen as the fundamental quantities, the dimensional formula of surface tension will be

  • [AIEEE 2012]

The equation of the stationary wave is
$y = 2A\,\,\sin \,\left( {\frac{{2\pi ct}}{\lambda }} \right)\,\cos \,\,\,\left( {\frac{{2\pi x}}{\lambda }} \right)$
Which statement is not true?

$A, B, C$ and $D$ are four different physical quantities having different dimensions. None of them is dimensionless. But we know that the equation $AD = C\, ln\, (BD)$ holds true. Then which of the combination is not a meaningful quantity ?

  • [JEE MAIN 2016]

In the expression $P = El^2m^{-5}G^{-2}$, $E$, $l$, $m$ and $G$ denote energy, mass, angular momentum and gravitational constant respectively. Show that $P$ is a dimensionless quantity.