The equation of a circle is given by $x^2+y^2=a^2$, where $a$ is the radius. If the equation is modified to change the origin other than $(0,0)$, then find out the correct dimensions of $A$ and $B$ in a new equation: $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$.The dimensions of $t$ is given as $\left[ T ^{-1}\right]$.
$A =\left[ L ^{-1} T \right], B =\left[ LT ^{-1}\right]$
$A =[ LT ], B =\left[ L ^{-1} T ^{-1}\right]$
$A =\left[ L ^{-1} T ^{-1}\right], B =\left[ LT ^{-1}\right]$
$A =\left[ L ^{-1} T ^{-1}\right], B =[ LT ]$
A highly rigid cubical block $A$ of small mass $M$ and side $L$ is fixed rigidly onto another cubical block $B$ of the same dimensions and of low modulus of rigidity $\eta $ such that the lower face of $A$ completely covers the upper face of $B$. The lower face of $B$is rigidly held on a horizontal surface. A small force $F$ is applied perpendicular to one of the side faces of $A$. After the force is withdrawn block $A$ executes small oscillations. The time period of which is given by
The dimension of $\frac{1}{2} \varepsilon_0 E ^2$, where $\varepsilon_0$ is permittivity of free space and $E$ is electric field, is
If $V$ denotes the potential difference across the plates of a capacitor of capacitance $C$, the dimensions of $C{V^2}$are
In the relation $y = a\cos (\omega t - kx)$, the dimensional formula for $k$ is
Which pair do not have equal dimensions?